207 research outputs found

    Should I send now or send later? A decision-theoretic approach to transmission scheduling in sensor networks with mobile sinks

    Get PDF
    Mobile sinks can significantly extend the lifetime of a sensor network by eliminating the need for expensive hop-by-hop routing. However, a sensor node might not always have a mobile sink in transmission range, or the mobile sink might be so far that the data transmission would be very expensive. In the latter case, the sensor node needs to make a decision whether it should send the data now, or take the risk to wait for a more favorable occasion. Making the right decisions in this transmission scheduling problem has significant impact on the performance and lifetime of the node. In this paper, we investigate the fundamentals of the transmission scheduling problem for sensor networks with mobile sinks. We first develop a dynamic programming-based optimal algorithm for the case when the mobility of the sinks is known in advance. Then, we describe two decision theoretic algorithms which use only probabilistic models learned from the history of interaction with the mobile sinks, and do not require knowledge about their future mobility patterns. The first algorithm uses Markov Decision Processes with states without history information, while the second algorithm encodes some elements of the history into the state. Through a series of experiments, we show that the decision theoretic approaches significantly outperform naive heuristics, and can have a performance close to that of the optimal approach, without requiring an advance knowledge of the mobility

    From virtual demonstration to real-world manipulation using LSTM and MDN

    Full text link
    Robots assisting the disabled or elderly must perform complex manipulation tasks and must adapt to the home environment and preferences of their user. Learning from demonstration is a promising choice, that would allow the non-technical user to teach the robot different tasks. However, collecting demonstrations in the home environment of a disabled user is time consuming, disruptive to the comfort of the user, and presents safety challenges. It would be desirable to perform the demonstrations in a virtual environment. In this paper we describe a solution to the challenging problem of behavior transfer from virtual demonstration to a physical robot. The virtual demonstrations are used to train a deep neural network based controller, which is using a Long Short Term Memory (LSTM) recurrent neural network to generate trajectories. The training process uses a Mixture Density Network (MDN) to calculate an error signal suitable for the multimodal nature of demonstrations. The controller learned in the virtual environment is transferred to a physical robot (a Rethink Robotics Baxter). An off-the-shelf vision component is used to substitute for geometric knowledge available in the simulation and an inverse kinematics module is used to allow the Baxter to enact the trajectory. Our experimental studies validate the three contributions of the paper: (1) the controller learned from virtual demonstrations can be used to successfully perform the manipulation tasks on a physical robot, (2) the LSTM+MDN architectural choice outperforms other choices, such as the use of feedforward networks and mean-squared error based training signals and (3) allowing imperfect demonstrations in the training set also allows the controller to learn how to correct its manipulation mistakes

    Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration

    Full text link
    We propose a technique for multi-task learning from demonstration that trains the controller of a low-cost robotic arm to accomplish several complex picking and placing tasks, as well as non-prehensile manipulation. The controller is a recurrent neural network using raw images as input and generating robot arm trajectories, with the parameters shared across the tasks. The controller also combines VAE-GAN-based reconstruction with autoregressive multimodal action prediction. Our results demonstrate that it is possible to learn complex manipulation tasks, such as picking up a towel, wiping an object, and depositing the towel to its previous position, entirely from raw images with direct behavior cloning. We show that weight sharing and reconstruction-based regularization substantially improve generalization and robustness, and training on multiple tasks simultaneously increases the success rate on all tasks
    • …
    corecore